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Abstract Sugi, Cryptomeria japonica D. Don, is one of
the most important forestry species in Japan. We here
report the development of 217 CAPS markers derived
from sugi cDNA libraries. More than half of a set of STS
markers produced could be converted into CAPS mark-
ers using restriction endonuclease analysis. Of the 217
markers, 71 showed different patterns of polymorphism
when they were digested with a range of endonucleases
and, in total, 347 polymorphisms were found in the vari-
ous combinations of STSs and endonucleases. When the
polymorphisms gave co-dominant patterns in a screening
program, the polymorphic information content (PIC)
used to evaluate the value of the polymorphisms was
relatively high (0.33, on average) compared to the infor-
mation yielded by commonly used markers, like iso-
zymes. The results of a segregation analysis suggest that
approximately 80% of the CAPS markers developed
here will show co-dominant inheritance. From logistic
regression analysis, the polymorphisms were found to be
associated more strongly with intron than with exon re-
gions. Sixty two markers were subsequently mapped on
the previously reported linkage map, 15 of which
showed abnormal segregation, presumably caused by
linkage with lethal factors.
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Introduction

Informative DNA markers showing co-dominant inherit-
ance are vauable for constructing linkage maps and
studying population genetics, especially for allogamous
plant species. Plant geneticists have sought to map the
genome, and study its organization, in diverse species by
various methods including: evaluation of specific breed-
ing lines such as recombinant inbred lines (RIL; Lister
and Dean 1993) and doubled-haploid lines (DH; Powell
et al. 1992), development of new theories (Grattapaglia
and Sederoff 1994) and analysis of molecular markers.
However, for allogamous plant species subject to strong
inbreeding depression like conifersit is difficult, or even
virtually impossible, to make a RIL or DH line. Thus,
developing informative molecular markers is a much
more effective way to resolve genetic questions.

In the last decade, with the advances of molecular
biology, various types of molecular markers, such as re-
striction fragment length polymorphism (RFLP), random
amplified polymorphic DNA (RAPD) and amplified
fragment length polymorphism (AFLP) markers, have
been developed and applied to the genetic studies of
plant species. Amongst these, RAPD and AFLP markers
have the virtues of speed and efficiency, due to their use
of polymerase chain reaction (PCR) systems. However,
they are mostly inherited in a dominant manner and so
are less-informative than co-dominant marker systems.
On the other hand, RFLP markers are generally co-domi-
nant, but they require severa time-consuming, tedious
steps and a large amount of DNA per assay. Moreover,
for species with large genomes, like conifers, the signal
of a single-copy gene in RFLP analysis is generaly
weak, and the DNA is not usually well-digested because
of the inhibitory effects of methylation on the endonucle-
ases used.

Cleaved amplified polymorphic sequence (CAPS),
aso known as PCR-RFLP, markers utilize amplified
DNA fragments digested with a restriction endonuclease
to display restriction site polymorphisms (Konieczny and
Ausubel 1993; Drenkard et a. 1997) and they have been
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developed in several plant species, such as Arabidopsis
thaliana (Konieczny and Ausubel 1993), rice (Williams
et al. 1991; Ghareyazie et a. 1995), barley (Tragoonrung
et al. 1992; Mano et al. 1999), wheat (Talbert et al. 1994)
and loblloly pine (Harry et a. 1998). In comparison with
other molecular-marker systems, CAPS markers have
several advantages. They are quick and easy to assay,
they require only a few nanograms of DNA owing to the
PCR amplification, and they are inherited mainly in a co-
dominant manner. CAPS markers are robust because an
amplified product is always obtained, whereas RAPD
and AFLP markers have inherently null alleles. Further-
more, where CAPS markers are developed from se-
guenced-tagged-site (STS) primers with designs based
on cDNA (i.e. expressed-sequence-tags; ESTS), they re-
present real functional genes and are more useful as ge-
netic markers than those based on anonymous non-func-
tional sequences, such as simple sequence repeat (SSR)
markers. To detect polymorphisms of STS fragments, we
can also use other marker systems or techniques such as
SSCP or DGGE. Although SSCP and DGGE can detect
DNA sequence-alterations as small as a single nucleotide
change in the entire segment, they are more sensitive to
the experimental conditions and need more difficulty in
their manipulation than CAPS markers.

Sugi, Cryptomeria japonica D. Don, is one of the
most important forestry tree species on account of its ex-
cellent characters, such as rapid growth, a straight bole,
ease of regeneration, and softwood with a pleasant color
and scent. In sugi, severa mapping projects have been
undertaken using different marker systems and types of
segregating populations, such as a full-sib F; population
(Nikaido et al. 2000) and a three-generation pedigree de-
rived from the full-sib cross or self-pollination of F; in-
dividuals (Mukai et al. 1995). Therefore, the information
contained in the different maps should now be integrated
to correlate the loci identified on them. Such integration
should enable the construction of a complete map of sugi
and a comparison of the quantitative trait loci (QTLS)
detected on different maps. The EST markers, such as
CAPS and RFLP markers derived from cDNA, should
provide good anchor points (i.e. putatively identical
points of reference between different maps) in integrat-
ing the information contained in multiple maps derived
from different mapping populations.

The coding regions of functional genes are generally
well preserved not only within species but also between
species. Tsumura et a. (1997) and Tsumura et al. (1998)
showed that STS primer pairs derived from sugi cDNA
were successfully amplified in related species within
Taxodium and Chamaecyparis. This suggests that the
sugi cDNA-derived CAPS markers could be efficiently
applied to related species, such as hinoki [Chamaecypar-
is obtusa (Sieb. Et Zucc.) Endl.], which is the second
most-widely cultivated tree species in Japan. This would
increase the effectiveness of developed markers and re-
duce the cost of developing them in related species.
Moreover, sugi cDNA-derived CAPS markers would
provide good anchor points in comparative mapping

among related species and a means of locating homolo-
gous regions of maps (i.e. synteny) among the related
Species.

Following these considerations, Tsumura et al. (1997)
generated 66 STS markers from sugi cDNA and found
that 16 of them showed restriction-site polymorphisms
(i.e. CAPS). However, the number of CAPS markers was
insufficient for use as anchor points in integrating or
comparing the linkage maps derived from other families
or other related species. Nikaido et al. (2000) also devel-
oped CAPS markers, which have been mapped in an F;
population, but these markers were not evaluated. In this
study, we designed STS primer pairs based on sugi
cDNA sequences and screened their potential as CAPS
markers. Some of the developed markers were further
used in the construction of a linkage map, together with
the segregation data previously reported by Mukai et al.
(1995). We also characterized the polymorphisms of the
CAPS markers, together with 16 previously published
CAPS markers (Nikaido et al. 2000), in relation to the
exon, intron and total lengths of the STS fragments and
the putative functions of the cDNAs from which the
primer pairs were designed, in order to make the future
development of CAPS markers more efficient.

Materials and methods

Designing primers and testing for the amplification of STSs

We designed 55 and 716 pairs of primers, based upon sugi cDNA
sequence libraries derived from 3-day imbibed embryos (Mukai
et a. 1995) and inner-bark tissues (Ujino-lhara et al. 2000), re-
spectively, using OLIGO ver. 4.0 or 5.1 (National Biosciences).
The pairs derived from these libraries were given designations
with the prefixes “CD” and “CC”, respectively. These 771 pairs
were tested for PCR amplification of STSs. The amplification was
performed in 20-pl reaction volumes containing 0.2 UM of each
primer, 0.2mM of each dNTP, 20 mM Tris-HCI (pH 8.4), 50 mM
KCl, 1.5 or 2.0 mM MgCl,, 0.4 U of Taq polymerase and 4 ng of
template DNA using thermal cyclers (a GeneAmp PCR Systems
9600, Applied Biosystems PE, or a PTC100 Programmable Ther-
mal Controller, MJ Research) programmed for 5 min at 94°C,
3545 cycles of 1 min at 94°C, 1 min at 50-65°C and 1 min 30 s
at 72°C; finishing with 5 min at 72°C. The concentration of
MgCl,, the annealing temperature and the number of cycles were
optimized for the amplification of STS fragments.

Screening of polymorphisms

Primer pairs that amplified STSs were then screened for their abil-
ity to detect restriction-site polymorphisms, with a screening panel
comprising 15 individuals (11 plus trees, i.e. €elite trees selected
according to their excellent phenotype from various parts of
Japan, and four parental trees of segregating populations). PCR
products amplified from the 15 individuals were subsequently di-
gested with either 24 endonucleases (Alul, BamHI, Bgll, Bglll,
Dral, EcoT38l, Haelll, Hhal, Hincll, HindllI, Hinfl, Mlul, Mspl,
Ncil, Nsil, Rsal, ScrFl, Spel, Sphl, Sspl, Sstll, Syl, Vspl and Xhol)
or 36 of them (the 24 just listed, plus Bcll, BstXI, EcoO109l,
EcoRl, EcoRV, Mboll, Nhel, Nsp V, Pstl, Pvull, Sall and Sau96l).
The products were then checked for restriction patterns through
electrophoresis in 2% agarose gels stained with ethidium bromide.
The 24- and 36-endonuclease sets are referred to hereafter as sets
A and B, respectively.



Characterization of polymorphisms

To identify informative markers, we evaluated the degree of poly-
morphism they detected, using the polymorphic information con-
tent (PIC) (Botstein et al. 1980) as an index, for al the different
polymorphisms observed by the various combinations of STSs and
endonucleases.

For the STSs derived from inner-bark libraries, we character-
ized the observed polymorphisms in the following two respects.
Firstly, we evaluated the influence of the lengths of the exon and
intron contained in each STS on the level of polymorphism. Exon
lengths were obtained from the size of the amplified fragments of
the corresponding cDNA clones, and intron lengths were derived
by subtracting the length of the exon from the total length of the
STS. STSs longer than 2,000 bp were excluded from the analysis
because their lengths could not be precisely measured by reference
to the molecular size markers used in the electrophoreses. To clari-
fy the contribution of exon and intron lengths to the polymor-
phism, we applied the following logistic regression model to their
relationship:

0 p(xelxi) O_
log (- pOxe, %) O Bo + BeXe * B X,

where x, and x; are the exon and intron lengths, respectively, and
p(x.%;) is the conditional probability that the STS shows the poly-
morphism through digestion by at least one endonuclease con-
tained in set A or B, given the lengths of the exon and intron
found. The goodness of fit of the model was tested based on devi-
ance and Pearson X2 statistics, and the significance of each explan-
atory variable was tested by calculating Wald x2 values. We aso
applied logistic regression to the relationship between the total
length of each STS and the polymorphism, in order to evaluate the
contribution of the fragment lengths themselves. StatView ver.5.1
(SAS Insgtitute) was used in the analyses.

We also evaluated the relationship between the polymorphisms
and the putative functions of the cDNAs from which the STS
primer pairs were disigned. We classified the STSs into 13 func-
tional classes (related to metabolism, energy, cell growth, tran-
scription, protein synthesis, protein destination, transport facilita-
tion, intracellular transport, cellular organization, cell-wall forma-
tion, signal transduction, stress response and organelle-specific
proteins) according to their putative functions, based on homology
with proteins identified in a BLAST search at a threshold score of
50 or more (Ujino-lhara et al. 2000). We then determined the pro-
portions of the polymorphic STSs in each functional class. Differ-
ences in the proportions among the classes were evaluated by a x?2
test based on the resulting contingency table. Because the degree
of polymorphism depends on the number of endonucleases used in
the screening, these analyses were separately performed with two
data sets; one derived from STSs screened with endonuclease set
A, and the other from STSs screened with set B (hereafter, desig-
nated as data sets | and |1, respectively).

Segregation analyses and construction of alinkage map

Some of the polymorphic STSs were investigated further to deter-
mine their mode of inheritance and location on a linkage map. In
this analysis, we used the segregating population that had been pre-
viously assessed in the construction of the linkage map generated by
Mukai et a. (1995). This population consists of 73 individuals de-
rived as a self-pollinated array of progeny (F,) from an F, hybrid of
a cross between two local cultivars, ‘Kumotooshi’ (female) and
‘Okinoyamarsugi’ (male). Markers considered to be heterozygous
in the F; hybrid were employed for segregation tests and segrega-
tion patterns were scored for the markers. The segregation data were
analyzed using the MAPMAKER/EXP 3.0 program (Lander et al.
1987), including information concerning 164 markers (128 RFLPs,
33 RAPDs, two isozymes, and one morphological) used in Mukai et
al. (1995). Linkage thresholds for grouping markers at loci were set
at LOD scores of 4.0 or more, and a maximum map distance of
40 cM. The “Order” command was used to decide the orders of the
loci and the Haldane (1919) map function was used in the anaysis.
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Results
Test for the amplification of STSs

Of 771 primer pairs designed, 361 successfully amplified
STSs of which 31 were based on sequences in the cDNA
library from 3-day imbided embryos, and 330 on se-
guences in the inner-bark tissue library. In most cases,
suitable PCR conditions were obtained solely by varying
annealing temperatures. The size of the STSs ranged
from 300 bp to over 2,000 bp and most (approximately
70%) varied from 500 bp to 1,500 bp. In most cases of
failure in amplifying STSs, plura sizes of fragments
were amplified even in a stringent condition.

PCR amplification of these STSs was carried out in
optimized conditions with 15 individuals included in the
screening panel. Of these STSs, ten did not yield any
PCR products in several (1-7) individuals and ten
showed a clear length polymorphism of amplified
fragments, i.e. amplicon length polymorphism (ALP)
(Ghareyazie et al. 1995) (see Appendix). The former
type of polymorphism seemed to be caused by variations
within the priming site and the latter mainly by inser-
tion/deletion (indel) mutations within the amplified
region.

Screening for restriction-site polymorphism

Of the 361 STSs, 267 (74%) were revealed to be poly-
morphic in the screening, following digestion with re-
striction endonucleases. In cases in which we applied en-
donuclease sets A and B, 70% and 77% showed poly-
morphisms, respectively. Of these, 217 were found to
have clear polymorphisms and 71 showed different poly-
morphic band patterns when they were digested with dif-
ferent endonucleases. In total, we found 347 clear poly-
morphisms using the different combinations of STSs and
endonucleases (see Appendix).

The polymorphisms observed in the screening pro-
gram were classified into the following five types based
on their observed band patterns: (1) bi-allelic co-domi-
nant patterns, which seemed to correspond to two homo-
zygotes and one heterozygote, (2) asin the first case, ex-
cept that no heterozygote was found, (3) bi-allelic domi-
nant patterns, which could be scored only in terms of
presence or absence, (4) multi-allelic co-dominant pat-
terns, apparently corresponding to genotypes with multi-
ple alleles, and (5) patterns for which the allelic relation-
ship could not be inferred. These five types accounted
for 119, 6, 183, 16 and 23 of the polymorphic combina-
tions, respectively (see Appendix).

Characterization of the observed polymorphisms
We calculated PIC values for al the observed polymor-

phisms except for those in the above-mentioned class 5.
In class 1, PIC was generally high, its average value be-
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Fig. 1 Polymorphic information content (PIC) of the polymor-
phisms observed with the different combinations of STSs and en-
donucleases. Cases 1 to 4 indicate four types of band patterns ob-
served in the screening panels. Case 1: bi-allelic co-dominant pat-
terns, which seemed to correspond to two homozygotes and one
heterozygote. Case 2: patterns like case 1, except that no heterozy-
gote was found. Case 3: bi-allelic dominant patterns, which can be
scored only in terms of presence or absence. Case 4: multi-alelic
co-dominant patterns, which seemed to correspond to genotypes
with multiple alleles

ing 0.31 (see Fig. 1, and the Appendix). In class 2, PIC
was generally low (0.15, on average), while PIC values
in class 3 were diverse (0.21, on average). In class 4,
where multiple alleles were observed, PIC was generally
higher than that observed in the other three classes listed
(0.46, on average).

For the primer pairs derived from the inner-bark li-
braries, we evaluated the relationship between the STS
lengths and the restriction-site polymorphisms. For data
set |, most of the STSs showed polymorphism when the
intron length exceeded 200 bp (Fig. 2b). However, the
length of the exon had a less-marked influence on the
number of polymorphic STSs (Fig. 2a). We applied lo-
gistic regression to these data and obtained the following
regression equation:

log %Ez —0.354 +0,144(+0.065) X,
PXeX)E «10-2 +0.348(20.117) x, x10-2.

Neither the deviance nor Pearson X2 values of this model
were significant (x%=49.72, p=0.996 and X3,=62.83,
p=0.909, respectively), indicating that there were no
grounds for deciding that this model did not fitt well to
the data. The coefficient of determination (R2) for this
model was 0.122. The Wald X2 test indicated that the
contributions of the exon and intron length were signifi-
cant at the 5% and 1% probability levels (x7=4.89,
p=0.027 and x5=8.91, p=0.003, respectively). The intron
length gave higher values for the coefficient and the
Wald x2 than the exon length, suggesting that the intron
region in each STS contributes to restriction-site poly-
morphism more strongly than the exon region. We also
applied logistic regression to the relation between the to-
tal length of the STSs (x,) and the polymorphism, obtain-
ing the following equation:

O PX) O 3
log TV E 0.667 +0.214(+0.053) , x10-3.

1
o

it
=

H

N = Frequency
O Monomorphic | 7| O
B Polymorphic

2

Number of STSs

0 -

(2)

0.8

2

| —@— Frequency ]
__| B Monomorphic|__ _
B Polymorphic

&

Number of STSs
g
=]
L -
SS.1S Mydaocw o, o L>uanbaag

2 3
|

=

rd

s

=
=
-]

E E E E E E
s F &

& = &

== e

Intron Length (bp)
{b)

Fig. 2 Numbers of “polymorphic” STSs, i.e. those that showed re-
striction-site polymorphism with at least one endonuclease in the
screening with endonuclease set B (see text), and “monomorphic”
forms, i.e. those that did not show polymorphism throughout the
screening, within the length of (a) the exon and (b) the intron.
Line graphs indicate the proportion of polymorphic STSs within
each class

Neither the deviance nor the Pearson x2 values were
significant (x3,=11.68, p=0.964 and x2,,=9.56, p=0.990,
respectively) and the Wald x2 was significant at the
0.1% probability level (x3=16.40, p<0.001). The R2
value for this model was 0.110. For data set |1, the re-
sults were very similar to those for data set |, except that
the effect of exon length was not significant at the 5%
level.

We also evaluated the relationship between the puta-
tive function of the amplified sequences and the poly-
morphisms. We found that differences in the proportion
of polymorphic STSs among the functional classes were
not significant at the 5% probability level in either data
set (X3,=20.60, p=0.057 for data set I; x%,=10.50,
p=0.311 for set II). This indicates that there is no clear
relationship between the putative functions and the poly-
morphisms.



Fig. 3 Sugi linkage map based
on the F, segregating popula-
tion between “Kumotooshi”
(female) and “ Okinoyama”
(male) showing CAPS, RFLP,
RAPD, isozyme and morpho-
logical loci. Four linkage
groups, each consisting of just
two markers, were not included
inthe figure. Theloci are listed
on the right, and map distances
in cM are shown on the left.
CAPSloci areindicated in bold
letters and the prefixes CD and
CC indicate markers derived
from the cDNA libraries of
3-day imbibed embryos and in-
ner-bark tissues, respectively.
The other loci are indicated in
italic letters. RFLP loci arein-
dicated by the prefixes CD and
GD, for loci detected by cDNA
and genomic DNA analysis,
respectively. Loci designated
by single capital letter prefixes,
by three letters and by the pre-
fix MT indicate RAPD, iso-
zyme and morphological trait
loci, respectively. Single,
double and triple asterisks
indicate loci with segregation
that is distorted significantly at
the 5%, 1% and 0.1% probabil -
ity levels, respectively. Loci
with ambiguous locations are
shown in parentheses; 167 loci
(identified by 46 CAPS,

101 RFLP, 17 RAPD and two
isozyme markers, and one
morphological marker) with
confirmed map positions were
assigned to 15 linkage groups,
with atotal size of 1,109.1 cM
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Segregation test and construction of the linkage map

Sixty markers, which showed heterozygous patterns in
the F; hybrid, were subsequently used in segregation
analysis. Of these markers, all 30 that showed co-domi-
nant band patterns in the screening programm (classes 1
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and 4) were found to segregate in a co-dominant manner
among F, recombinants. Of the 27 markers that showed
dominant type band patterns in the screening (class 3),
16 segregated in a co-dominant manner and the others
in a dominant way. The other three markers showed
band patterns with allelic relationships that could not be
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Fig. 3 (continued)

inferred from the screening results (class 5); two segre-
gated in a co-dominant manner and the other in a domi-
nant fashion. In total, 48 markers out of 60 segregated
in a co-dominant manner. The segregation data concern-
ing the 60 markers were evaluated by x?2 tests for good-
ness-of-fit to the expected ratios, i.e. 1:2:1 in co-domi-

4.5¢M

nant cases and 3:1 in dominant cases. Fifteen out of
sixty of the markers showed a significant deviation
from the expected segregation ratios at the 5% level. Of
these, two markers (CD1712, CC1641) showed a severe
distortion, which was significant at the 0.1% probability
level.



Whether they fitted to the expected ratio or not, all of
the segregation data were used in the linkage analysis,
because the abnormal segregation of markers has been
already reported in a study using the same population
(Mukai et al. 1995). In the analysis of the 226 segregat-
ing markers, all those except for one CAPS and three
RAPD markers were distributed into 18 linkage groups,
of which 15 contained more than three markers (Fig. 3).
The total map distance covered by these 15 linkage
groups was 1,109.1 cM, and the average distance of in-
tervals between marker loci was 8.7 cM. The CAPS
markers were distributed amongst all of these 15 linkage
groups except for linkage group 14, and the positions of
46 CAPS markers could be confirmed.

All of the 15 CAPS markers with distorted segregation
were located in the neighborhood of markers with distort-
ed segregation that have already been reported in Muka
et al. (1995) (Fig. 3). The two markers with severe segre-
gation distortions (significant at the 0.1% probability
level) were mapped, together in a cluster of markers with
distorted segregation, on the first linkage group (LG1).

Discussion

In this study, we developed 217 CAPS markers in C.
japonica. The total number of CAPS markers available
for sugi is now 233, including those previously devel-
oped by Tsumura et al. (1997). This represent the second
largest number currently available for any plant species
after Arabidopsis thaliana, and the largest number for
any tree species.

The CAPS markers developed in this study are ex-
pected to be inherited mainly in a co-dominant manner.
Although 53% (183/347) of the polymorphism showed
dominant band patterns in the screening, i.e. they could
only be scored in terms of their presence or absence, a
number of these seemed to be inherited in a co-dominant
manner, because they showed low PIC values. Low PIC
values suggest that homozygotes with rare alleles at the
corresponding loci may not have been observed, purely
by chance, owing to the limited number of individuals
assessed in the screening process. Furthermore, in the
segregation test, of 26 markers that showed dominant
band patterns in the screening, 16 were found to segre-
gate in a co-dominant manner. In total, 80% (48/60) of
the markers segregated in a co-dominant way in the seg-
regation test. Although we did not check the segregation
of al the developed markers, this proportion should be a
good reflection of the total ratio.

The screening panel used in this study contained 11
plus trees selected from various locations in Japan.
Hence, the genetic heterogeneity in the screening panel
would be expected to reflect the heterogeneity in the Jap-
anese sugi populations as a whole, at least to some de-
gree. Thus, the degree of polymorphism observed in the
panel should reflect the value of the markers in further
genetic studies. The markers that showed bi- or multi-al-
lelic co-dominant band patterns in the screening (classes
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1 and 4), which comprised 39% (135/347) of the total
observed polymorphisms, had comparatively high PIC
values, indicating that these markers should be generally
informative in practice. Moreover, 33% (71/217) of the
developed markers showed different polymorphic band
patterns when they were digested with different endonu-
cleases. These markers could be treated as multi-allelic
markers, which should make them more-informative in
further investigations.

In this study, 15 out of 60 CAPS markers showed a
departure from expected segregation ratios in the map-
ping population. This, however, is unlikely to have been
due to the nature of the developed markers. The main
cause of the segregation distortions is probably linkage
with deleterious or lethal alleles, because all of these
markers were clustered on the linkage map with markers
that have already been observed to segregate abnormally
(Mukai et al. 1995). If observed distortions are caused
only by linkage with viability loci, the locus positions
and effects can be estimated statistically from the distor-
tions (Cheng et al. 1996). In practice, viability loci caus-
ing inbreeding depression have been detected from map-
ping data in conifers (Kuang et al. 1998, 1999; Reming-
ton and O'Malley 2000). In other words, the distorted
segregation of CAPS markers will provide good infor-
mation for detecting deleterious or lethal alleles.

Although the CAPS markers developed in this study
are expected to have valuable practical features, their
development is not very efficient (using current tech-
niques) because of the costs, time and labor involved.
Therefore, improving the efficiency of their development
would be an important step. From the logistic regression
analyses, we found that the intron length of STSs con-
tributed more to the polymorphism than the exon length.
This indicates that a strategy whereby amplification
primers were placed so that STS fragments always in-
cluded some intron regions should increase their effi-
ciency in detecting STS polymorphism. This strategy
could be exploited when similar gene sequences in other
plants are found from DNA databases, and possible in-
tron positions can be identified. We aso derived a logis-
tic regression equation concerning the relationship be-
tween the total length of STS markers and polymor-
phism. Based on this equation, the probability that we
get a polymorphic STS will exceed 0.8 when its total
length is 1,000 bp (Fig. 4). However, athough the effi-
ciency of obtaining polymorphic STSs will increase as
their size increases, the PCR amplification will become
less efficient and the pattern of the cleaved fragments
will become more difficult to score since multiple bands
will be produced. Hence, polymorphic STSs are expect-
ed to be obtained most efficiently when primer pairs are
designed that amplify fragments with sizes ranging from
1,000 bp to 1,500 bp. No clear relationship between the
polymorphism and putative functions of the cDNA used
for designing the primer pairs was found. This suggests
that if we consider only the degree of polymorphisms of
the STS markers, there is no need to consider the func-
tion of the cDNA when developing CAPS markers.
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In this study, we also found length polymorphisms of
amplified fragments, i.e. ALPs. ALP-type STS markers
are appealing because developed markers need not to
further manipulation of PCR products when assaying
polymorphisms, a feature which also helps reduce the
cost of screening polymorphisms. In this study, however,
the frequency of primers that detected ALPs (10 primer
pairs out of 438) was musch lower than expected, in
comparison with studies in black spruce (Perry and
Bousquet 1998) and rice (Ghareyazie et al. 1995). Sever-
al possible reasons could be postulated for the low fre-
quency of ALPs we detected: a major one being that we
designed the primers so as to bind mainly to sites within
the exons of the STSs, in contrast to the strategy used by
Perry and Bousquet (1998), who designed their primers
to bind to sites within 3" untranslated regions (UTR). Al-
though the strategy of developing STS markers based on
ALPs is appealing, in severa respects they have some
disadvantages in comparison to CAPS markers. First, the
detectable polymorphism of ALP markers is no greater
than that of CAPS markers. Second, the detection of
polymorphism of ALP markers is potentially more de-
manding than that of CAPS markers, since the possible
presence of heteroduplexes makes the scoring of ALPs
difficult and, in some cases, sequence analysis is needed
to confirm the observed polymorphism (Perry and
Bousquet 1998). Although CAPS markers will also be
affected by the presence of heteroduplexes, the influence
is not so large that makes the scoring of banding patterns
difficult. This is because the scoring of CAPS markers
basically depends on whether STS fragments, each of
which shows a single band in electrophoresis before en-
zyme digestion, have sequence-specific cuts or not.

The linkage map constructed in this study showed the
location of 59 CAPS markers, the position of which
could be confirmed in 46 cases. Together with the CAPS
markers developed by Tsumura et al. (1997) and Nikaido

et a. (2000), the positions of 72 loci of CAPS markers
were confirmed on these maps. Together with RFLP
markers developed by Mukai et al. (1995), 158 EST loci
were determined. These markers should provide good
anchor points for integrating maps derived from different
families.

The linkage map contained 220 markers in total.
However, the number of linkage groups detected (15)
has not yet coverged to half the number of chromosomes
insugi (i.e. 11; 2n=22). One cause of this failure could
be attributed to the segregating population used in the
mapping, which was derived from the self-pollination of
an F, individual, because this type of population is ex-
pected to be heavily influenced by deleterious or lethal
factors. For constructing a completely converged linkage
map of sugi, it will be essential to integrate the informa-
tion contained in different maps, such as that developed
by Nikaido et a. (2000), based on AFLP and CAPS
markers.

The mapping population used in this study was also
used to map QTLs associated with juvenile growth,
flower-bearing and rooting ability (Yoshimaru et al.
1998). The detected QTLs could be compared with those
detected in other populations based on the integrated
map. Moreover, the integrated map and its EST loci will
make it possible to find homologous regions of a chro-
mosome and, also, homologous QTLs that have been
conserved among related species, such as hinoki. For the
above purposes, CAPS markers are very useful and con-
venient, especially for allogamous plants with large
genomes like conifers (the genome size of C. japonicais
6x10° bp, Sasaki et al. 1997).

The newly developed CAPS markers should be effec-
tive not only in genome mapping but also in population
analysis. The polymorphisms of CAPS markers are
mostly co-dominant and will be mainly selectively neu-
tral. Hence, they should be just as suitable for population
analysis as isozyme markers. Moreover, CAPS markers
have the advantage that the number of available markers
is virtually unlimited. The potential of CAPS markersin
population analysis has already been shown in a study by
Tsumura and Tomaru (1999), in which they evaluated the
genetic diversity among natural populations of sugi us-
ing several CAPS markers. The newly developed CAPS
markers and the information about their positions on the
linkage map will provide a useful way to analyze genetic
diversity at the chromosome level.

Data concerning the markers developed in this study
should be valuable for researchers studying related spe-
cies, and will be made available on the net, at http://
www.ffpri.affrc.go.jp/labs/cjgenome/database/cjdatae.html.
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Mboll (1, 0.35), Bll (3, 0.37), ScrFI (3, 0.36)

Mspl (1, 0.27)
Hhal (3, 0.37), Rsal (5, NA)

CAPS and ALPd

LGe

1,300
1,400
>2,000

Cycle Sized

35
35
35
d Detected polymorphisms. Restriction site polymorphisms (CAPS) are indicated with the

name of the restriction enzymes that detected the polymorphisms. Amplicon length poly-
respectively. ‘NA’ indicates that PIC was not available because the alelic relationship

indicate the type of polymorphism (see text) and polymorphic information content (PIC),
between polymorphic bands has not been identified

morphisms (ALPs) are shown as‘ALP'. The first and second numbers in the parentheses

An
temp.a
56
56
55

GCATCACACTTTCTCTTAGG
ACCATATTCATCCCCTCCTG
TCCCATGTTTCTGACCTTAG

Reverse primer

Forward primer

¢ Linkage group ‘L’ indicates markers located on the map developed in this study. ‘K’
and ‘H’ indicate markers on the maps of ‘Kumotooshi’ and ‘Haara4’ in Nikaido et al.
(2000), respectively. The numbers following the letters indicate linkage group numbers

" Concentration of MgCl, in the PCR reaction mixture was 2.0 mM
(seeaso Fig. 3)

a Annealing temperature (°C)

CD1951-1 CTCTGTCAAAGGTGTTAGTG
b STS fragment size (bp)

CD1960-2 CTGGCTAAACTTGGTCCTAC
CD2039-1 ACTCTGCTGATAGGCGACTG
* Tsumuraet a. (1997), ** Nikaido et al. (2000)

Appendix (continued)

Locus
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